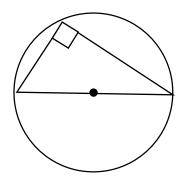


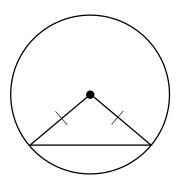
First, see how much of the sheet you ca	ın fill in from memory!
Formula for area of a circle:	
Formula for circumference of a circle: _	
Circle Theorems:	
	RULE:
	RULE:
	RULE:
•	RULE:

D B	RULE:	
	RULE:	
	RULE:	
	RULE:	

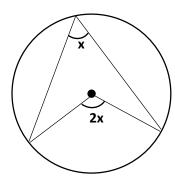


ANSWERS:

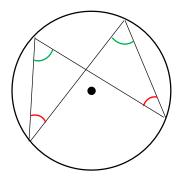
Formula for area of a circle: $\pi \times radius^2 (\pi r^2)$


Formula for circumference of a circle: π x diameter (π d or 2 π r)

Circle Theorems:

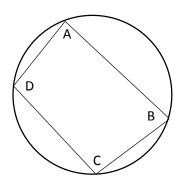

RULE: Angle in a semi-circle

A triangle in a semi-circle meets the edge of the circle at 90°


RULE: Triangle made of 2 radiuses (yes, we know it's radii!)

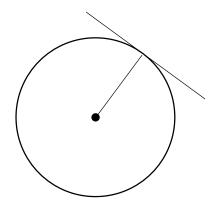
If a triangle starts at the centre and meets both edges, it's isosceles because the 2 sides that are radiuses are both the same length

RULE: Angles about the centre


The angle at the centre is twice as big as the angle touching the circumference

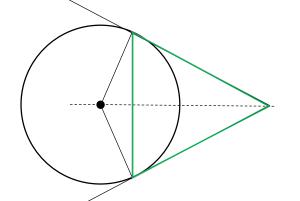
RULE: Angles in Segments / Subtended by the Same Arc

The angles at the top points are the same and the angles at the bottom points are the same

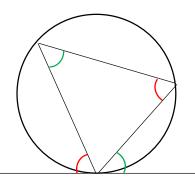

RULE: Cyclic Quadrilateral

When a quadrilateral touches the circumference with all 4 corners, it's a cyclic quadrilateral.

The opposite angles add to 180°, so:


A + C = 180

B + D = 180


RULE: Tangent to a radius

A tangent meets the radius at 90°

RULE: When 2 tangents meet

2 tangents that meet are $\underline{\text{the same}},$ so they produce an isosceles triangle

RULE: Alternate Segments

The green angles are the same and the red angles are the same.